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Exact formulas are derived for the thermoelasticity constants of mac-
roscopically homogeneous polycrystals. A method described earlier [1]
is used as the basis. It is assumed that the local parameters form an
ergodic homogeneous random field. No restriction is imposed on the
degree of anisotropy of the crystals.

1. The field of thermoelastic displacements 4 (r) in
an inhomogeneous elastic medium at equilibrium, in
the absence of body forces, is determined by the sys-
tem of equations of thermoelasticity [2]
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Here, 6(r) is the temperature increment relative
to some initial state; 7\jklm<r) is the elasticity-con-
stant tensor; Bjk(r) is the thermoelasticity-constant
tensor, which is linked to the thermal-expansion co-
efficient tensor o5k by the relation Bik = MkIm%®Im.
The convention of summation over the dummy indices
is used in Eq. (1.1) and below; r =X, X,, X;. In the
case of a polycrystal,
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where Pagyd and vy ge are the components of the corre-
sponding tensors in the crystallographic axes and Cjox
is a matrix for transformation to the laboratory coor-
dinate system. The tensor components, and also the
displacements, stresses, etc., undergo discontinuities
at the grain boundaries. Below, therefore, we shall
treat the parameters that enter Eq. (1.1) and subse-
quent formulas as generalized functions, The final
formulas will not contain operations on generalized
functions.

Let the scales of inhomogeneity and correlation be
small in comparison with the size of a polycrystal, and
let its properties be statistically homogeneous. Then
the polycrystal can be considered unbounded, and the
elasticity constants )‘jklm(r) and thermoelasticity
constants Bjk(r) can be considered as forming a homo-
geneous random field. Ina macroscopically homoge-

neous stressed-strained state, thetemperature, stress,

and strain fields are also homogeneous (the displace-
ments form a field with homogeneous increments). In
this case, stochastic boundary conditions canbe brought
into agreement with Eq. (1.1) by requiring, for exam-
ple, that the mathematical expectations of the strains
be equal to specified constant values. Let us set up
these conditions for the components of thedisplacement
gradient V
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(angular brackets indicate the operation of averaging).
The macroscopic elasticity and thermoelasticity con-

stants, which are denoted by )‘;klm and B}‘k, are found
from the condition of equality of the mathematical ex-
pectations of the thermoelastic stresses in apolycrys-
tal and an equivalent homogeneous medium:
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The problem consists in {inding a gradient duj/dxk
that satisfies Eq. (1.1) and additional oonditions (1.3)
and in calculating the macroscopic constants A
and B from (1.4).

We shall denote the mathematical expectations of
the parameters by one prime and their fluctuational
components by a double prime, For example,
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We introduce Green's tensor Gijk(r, ri) for a homo-
geneous elastic medium with constant 7\Jklm This ten-
sor satisfies the equation
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where 6, is the Kronecker symbol and é(r—r;) is a
three-~dimensgional delta function. Equation (1.1) and
conditions (1.3) correspond to the system of equations

N 9 dup (m
uj(r)— SG]z (%, 11) 5 — [Wlmnp(h) —l%';(g—) —

- ‘31:71 (ry) 6 (1'1)] dry = p;xy (1.8)

(dr, = dx;, dx,, dx,; integration isoverthe entire space).
If we differentiate (1.6) term by term and transform
the integral using the Gauss theorem, we arrive at a
system of linear integral equations in the gradient
duj/dxk:
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The macroscopic elasticity constants were deter-
mined in {11, Therefore, we shall limit ourselves to
determination of the macroscopic thermoelasticity
constants, letting all Pjk = 0. System (1.7) is solved
by the iteration method:
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Let us substitute the result into the left side of

(1.4)
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The macroscopic thermoelasticity constants B’-"k are
equal to the right sides of formulas (1.8) with opposite
sign divided by {6). Hence,
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2. Thus, the macroscopic thermoelasticity constants
are expressed in terms of the mixed moments of the
local elasticity and thermoealsticity constants, and
also in terms of the fluctuations of the temperature
field (the latter are functions of the fluctuations of the
thermal conductivity coefficients). For the state of
thermodynamic equilibrium, 6 = const, Formula (1,9)
can be written as

B = Bj;: + B> (2.1)

where Bi“ﬁ(r) is a solution of the system of linear inte-
gral equations
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Let us find a solution of system (2.2) for strongly
isotropic polycrystals (in the sense of the definition
introduced in {1]). For this case,
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where A, and y, are Lamé coefficients and B, is the
coefficient of thermal expansion, which are found with-
out allowance for correlation corrections, The expres-
sion for Green's tensor has the form
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Here, g is a constant for the material,

The joint correlation functions for the elasticity and
thermoelasticity constants, and also of the auxiliary
values B’ﬁ;‘ of a strongly isotropic medium are functions
only of the absolute values of the distances between
the points, Let
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In the new symbols, Eqs. (2.2) after averaging take
the form
wE PGy (2) X b { R
B > = :‘ 9%, 0%, [@inaved (0) + Vigarea (0)1dp 2.6)
The method of solving Eqs. (2.2), which is based
on recurrence formulas, is described in detail in [1],
The final result has the form
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The general term of series (2.7) is expressed in
terms of the single-point mixed correlation tensors
of the elasticity and thermoelasticity constants as fol-
lows:
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Here, [,pcq 18 an isotropic tensor of rank four,
which is a function of g, according to formula (2.4).

3. In the case of a strongly isotropic polycrystal,
thetensors Ajkim and Bik are related to the components
Hiklm and Yik in crystallographic coordinates by for-
mulas (1.2).” We introduce the symbols

Wittm = Wigtm — hjlim, Tit = Yig— Bir. (3.1)

Then, the fluctuational components of tensors
?jkl)m and Bji are determined by formulas similar to
1.2):
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Using expressions (3.2), let us calculate the mixed correlation
tensors in formula (2.8):
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we bring formula (2.8) to the form
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Substituting formula (3.3) into (2.7), we find that B?k = B*éjk. The
macroscopic thermoelasticity coefficient 8« is determined by the for-
mula

ot N
By - 1 S 1 o 0
Bo=80+ 3 & i, la‘xlaam, ERCR TR ol 0 - PR
N=1
TR TR P CHCRT AP (3.4)

Let us calculate the sum of the series on the right-hand side. For
this, we introduce the operator A, which converts the tensor of rank
two a =2, into the tensor b = bjk such that the equation b = Aa is
equivalent to the relation

b
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With the aid of this operator, formula (3.4) can be represented as
Ba = Bo—Ys Py, R (3.6)

where the tensory = waﬁ is equal to the sum of the series
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(y" is a tensor with components y4g"). The right-hand side of formula
(3.7) is a solution of the operator equation

4 5Ag = A" (3.8)

which represents a system of linear algebraic equations in the compo-
nents ¥ g The number of equations depends on the class of the struc-
ture (but does not exceed three). In the case of cubic crystals, all
70(6" =0, and, therefore, all¥ 43 = 0. In this case, the correlation
corrections for the averaged thermoelasticity constants vanish.
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